Please check the examination details below	before entering your candidate information
Candidate surname	Other names
Pearson Edexcel International Advanced Level	e Number Candidate Number
Tuesday 22 Octo	ober 2019
Morning (Time: 1 hour 20 minutes)	Paper Reference WCH13/01
Chemistry International Advanced Sul Unit 3: Practical Skills in Ch	•
Candidates must have: Scientific cald Ruler	culator Total Marks

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL the questions.

Write your answers in the spaces provided.

- 1 A series of tests is carried out on a solid compound **A** and an aqueous solution **B**.
 - (a) Compound A contains one cation and one anion.

Complete the inferences.

(i) A flame test is carried out on A.

(1)

Observation	Inference
Yellow flame colour	The formula of the cation in A is

(ii) A small amount of solid **A** is placed in a test tube and heated strongly. A glowing splint is held in the mouth of the test tube.

Observation	Inference
The glowing splint relights	The gas formed is
	The formula of the anion in A could be

(b) A series of tests is carried out on aqueous solution **B**.

Complete the inferences.

(i) A piece of magnesium ribbon is added to $5\,\mathrm{cm}^3$ of **B** in a test tube.

A lighted splint is held over the mouth of the test tube.

(2)

Observation	Inference
Bubbles of gas are given off	The gas is
The gas burns with a squeaky pop	
	The formula of the cation in B is

(ii) Silver nitrate solution acidified with dilute nitric acid is added to another 5 cm³ of **B** in a test tube.

(2)

Observation	Inference
White precipitate forms	The name or formula of the precipitate is
	The name or formula of solution B is

(Total for Question 1 = 7 marks)

- 2 Tests are carried out to identify three organic liquids, C, D and E.
 - (a) A spatula measure of phosphorus(V) chloride, PCI₅, is added to each liquid in separate test tubes.

Any gas given off is tested with damp blue litmus paper.

	Observation	
С	D	E
Misty fumes are given off	Misty fumes are given off	No change
Damp blue litmus paper turns red	Damp blue litmus paper turns red	

Identify, by name or formula, the misty fumes produced by liquids **C** and **D**.

(1)

(b) $2\,\text{cm}^3$ of aqueous sodium carbonate, $\text{Na}_2\text{CO}_3(\text{aq})$, is added to each liquid in separate test tubes.

Any gas given off is tested with limewater.

Observation			
C	D	E	
Bubbles of a colourless gas are given off	No change	No change	
Limewater turns cloudy			

Identify, by name or formula, the gas produced by liquid **C**.

(1)

- (c) Each of the compounds **C**, **D** and **E** contains three carbon atoms and one functional group, which is on the end of the carbon chain.
 - (i) Using this information and the results from parts (a) and (b), deduce the structures of **C** and **D**.

(2)

Structure of D

(ii) The mass spectrum of **E** has a molecular ion peak at m/z = 58. Using this information and the information in (c), deduce the structure of **E**.

(1)

Structure of E

(iii) Give a chemical test and its positive result to confirm the identity of the functional group in **E**.

(d) The apparatus shown was used to find the enthalpy change of combustion of one of the liquids **C**, **D** or **E**.

(i) List all the measurements you would make in carrying out this experiment.

(3)

(ii) Give **two** ways, other than changing the measuring instruments or repeating the experiment, in which the accuracy of the results using this apparatus could be improved.

(2)

(Total for Question 2 = 12 marks)

3 An experiment is carried out to determine the formula of an oxide of copper.

A sample of the copper oxide is reduced to copper by hydrogen gas using the apparatus shown.

Procedure

- Step 1 Weigh the empty test tube.
- Step 2 Place two spatula measures of copper oxide in the test tube and reweigh.
- Step **3** Pass hydrogen into the test tube and, after a delay of a few seconds, light the gas at the hole at the end of the test tube.
- Step 4 Start heating the copper oxide.
- Step **5** After the copper oxide has been completely reduced, turn off the Bunsen burner, but continue to pass hydrogen over the product until it has cooled down.
- Step 6 Weigh the test tube and copper.
- (a) Give a reason why, in Step 3, there should be a delay of a few seconds before lighting the hydrogen at the end of the test tube.

(1)

(b) (i) Complete the table of results.

(1)

Measurement	Mass/g
Mass of test tube	40.27
Mass of test tube and copper oxide	43.42
Mass of test tube and copper	42.79
Mass of copper in copper oxide	
Mass of oxygen in copper oxide	

(ii) Use these results to calculate the formula of this copper oxide.

You must show your working.

[
$$A_r$$
 values: $Cu = 63.5 O = 16.0$]

(3)

(c)		e experiment was repeated. However, in Step 5 , both the Bunsen burner and e hydrogen supply were turned off while the apparatus cooled.	
	(i)	State how the appearance of the solid in the test tube changes as the apparatus cools.	(1)
	(ii)	Explain how this change in the procedure affects the calculated formula of the copper oxide.	(2)
		(Total for Question 3 = 8 ma	rks)

4 An experiment is carried out to determine the molar mass of a solid acid, H₂X.

(a)	Describe how 250.0 cm ³	of a standard solution	n should be prepared	d using a
	pre-weighed sample of	1.13 g of H_2X .		

(4)

(b) 25.0 cm³ of this H₂X solution was pipetted into a conical flask and titrated with

$$H_2X(aq) + 2NaOH(aq) \rightarrow Na_2X(aq) + 2H_2O(l)$$

(i) The indicator used was phenolphthalein.

0.213 mol dm⁻³ sodium hydroxide solution.

The equation for the reaction is

State the colour **change** at the end-point.

(1)

Results

Number of titration	1	2	3
Final burette reading/cm ³	12.20	24.10	11.75
Initial burette reading/cm ³	0.00	12.20	0.05
Volume of NaOH used/cm ³	12.20	11.90	11.70

(ii) Using appropriate titrations, calculate the mean titre in cm³.

(1)

(iii) Calculate the number of moles of H₂X in the 250.0 cm³ of solution.

(3)

(iv) Calculate the molar mass of H_2X , using your answer in (b)(iii) and the mass of H_2X given.

Give your answer to an appropriate number of significant figures.

(c)	Th	e maximum uncertainty each time a burette is read is ± 0.05 cm ³ .	
	(i)	Calculate the percentage uncertainty in measuring the 11.70 cm ³ of sodium hydroxide used in titration 3 .	(1)
	(ii)	The percentage uncertainties in the three titrations are similar.	
		Suggest how the percentage uncertainty in a burette measurement could be reduced, without changing the apparatus.	
		Justify your answer.	(2)
		(Total for Question 4 = 14 ma	rks)
		(10tal 101 Question 4 – 14 illa	i NJ)

- **5** Limonene, an oil, can be extracted from oranges in four steps.
 - (a) In Step **1**, grated orange peel is added to some distilled water. The mixture is heated under reflux for about 10 minutes.

Draw a labelled diagram of the apparatus used to reflux the mixture.

(3)

(b) In Step 2 the mixture from Step 1 is distilled. The distillate contains a mixture of limonene and water.

In Step **3** the limonene and water mixture from Step **2** is poured into a separating funnel and pentane is added.

Limonene is much more soluble in pentane than in water.

The density of pentane is 0.626 g cm⁻³

(i) Complete the diagram of the separating funnel by drawing the aqueous and pentane layers and labelling them.

(1)

(ii)	Describe how the separating funnel is used to obtain the pentane layer.

(c) In Step **4** the pentane is allowed to evaporate in a fume cupboard, leaving limonene.

150 mg of limonene is produced from 23.0 g of orange peel.

Calculate the percentage of limonene, by mass, extracted from the orange peel.

(1)

(d) 0.001 mol of limonene decolourised 0.32 g of bromine, Br₂.

Explain what these results tell you about the structure of limonene.

[Use
$$M_r$$
 (Br₂) = 160]

(2)

(Total for Question 5 = 9 marks)

TOTAL FOR PAPER = 50 MARKS

The Periodic Table of Elements

10						
ted	[222] Rn radon 86	Xe xenon 54	Kr krypton 36	4.0 He helium 2 2 2 2 20.2 Ne neon 10 39.9 Ar argon 18	(18)	0 (8)
een repor	[210] At astatine 85	126.9 I todine 53	79.9 Br bromine 35	(17) 19.0 F Ruorine 9 9 9 35.5 CL chlorine		1
16 have b	Po Potonium 84	127.6 Te tellurium 52	79.0 Se selenium 34	(16) 16.0 0 0 000 8 8 8 8 8 32.1 S S suffur 16		9
tomic numbers 112-116 hav but not fully authenticated	Bi Bi bismuth 83	121.8 Sb antimony 51	As As arsenic 33	(15) 14.0 N nitrogen 7 7 31.0 P phosphorus 15		2
tomic num but not fu	207.2 Pb tead 82	118.7 Sn tin 50	72.6 Ge germanium 32	(14) 12.0 C C carbon 6 5 Si silicon p		4
Elements with atomic numbers 112-116 have been reported but not fully authenticated	204.4 TI thallium 81	114.8 In indium 49	69.7 Ga gallium 31	(13) 10.8 B boron 5 27.0 Al atuminium 13		m
Elem	Hg mercury 80	112.4 Cd cadmium 48	65.4 Zn zinc 30	(12)		
[272] Rg roentgenium	197.0 Au gold 79	Ag silver 47	63.5 Cu copper 29	α		
Ds Ds damstadtium r 110	195.1 Pt platinum 78	106.4 Pd palladium 46	58.7 Ni nickel 28	(10)		
[268] [271] Mt Ds metroerium damsadtum 109 110	192.2 Ir iridium 77	Rh rhodium 45	Co cobalt 27	(6)		
Hs Hassium n	190.2 Os osmium 76	101.1 Ru ruthenium 44	55.8 Fe iron 26	1.0 H 1 1	1.0	
[264] Bh bohrium 107	Re rhenium 75	Mo Tc Mobdenum technetium ru 42 43	54.9 Mn nanganese 25	E		
Sg seaborgium 106	183.8 W tungsten 74	95.9 Mo notybdenum t 42	52.0 54.9 Cr Mn chromium manganese 24 25	T 1		
[262] Db dubnium s	180.9 Ta tantalum 73	92.9 Nb niobium n	50.9 V vanadium 23	relative atomic mass atomic symbol name atomic (proton) number (4) (5) (6)		
[261] Rf nutherfordium 104	178.5 Hf hafnium 72	91.2 Zr zirconium 40	47.9 Ti títanium 22	atoric atomic (4)		
[227] Ac* actinium 89	138.9 La* anthanum 57	88.9 Y yttrium 39	45.0 Sc scandium 21	(3)		
Ra radium 88	137.3 Ba barium 14	87.6 Sr strontium 38	Ca calcium 20	9.0 Be beryllium 4 24.3 Mg magnesium 12		7
[223] Fr francium 87	132.9 Cs caesium 55	85.5 Rb rubidium s	39.1 K K potassium 19	(1) 6.9 Li 1ithium 1 3 3 23.0 Na sodium n		-

* Lanthanide series

* Actinide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
G	F.	PN	Pm	Sm	Eu	PS	10	Ď	유	ŭ	Tm	ΛÞ	3
cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
28	59	09	- 61	62	63	64	65	99	. 67	89	69	70	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
۴	Pa)	ď	Pu	Am	E O	Bk	ຽ	Es	Fm	PW	9N	۲
horium	protactinium	uranium	neptunium	plutonium	americium	aunum	berkelium	californium	einsteinlum	fermium	mendelevlum	nobelium	lawrencium
06	91	92	93	94	95	96	46	86	66	100	101	102	103